CrossRef Text and Data Mining
Result of CrossRef Text and Data Mining Search is the related articles with entitled article. If you click link1 or link2 you will be able to reach the full text site of selected articles; however, some links do not show the full text immediately at now. If you click CrossRef Text and Data Mining Download icon, you will be able to get whole list of articles from literature included in CrossRef Text and Data Mining.
Zn3(PO4)2 Protective Layer on Zn Anode for Improved Electrochemical Properties in Aqueous Zn-ion Batteries
Chae-won Kim, Junghee Choi, Jin-Hyeok Choi, Ji-Youn Seo, Gumjae Park
J. Electrochem. Sci. Technol. 2023;14(2):162-173.   Published online February 16, 2023
DOI: https://doi.org/10.33961/jecst.2022.00934

Excel Download

Zn4FeII 5(PO4)6 ∙ 4H2O : Eine reduzierte und „aufgefüllte“ Variante der Zn2(Zn1-xFex)FeIII(PO4)3 • 2H2O-Struktur / Zn4FeII 5(PO4)6 ∙ 4H2O : A Reduced and „Filled“ Variant of the Zn2(Zn1-xFex)FeIII(PO4)3 • 2H2O Structure
Zeitschrift für Naturforschung B. 1992;47(3):445-448   Crossref logo
Link1 Link2 Link3

Electrochemical and Transport Properties of Non-Aqueous Zn Electrolytes and Reversible Intercalation Chemistry for Zn/V2O5 and Zn/MnO2 Batteries
ECS Meeting Abstracts. 2016;MA2016-03(2):1131-1131   Crossref logo
Link1 Link2 Link3 Link4

NaTi2(PO4)3 Solid‐State Electrolyte Protection Layer on Zn Metal Anode for Superior Long‐Life Aqueous Zinc‐Ion Batteries
Advanced Functional Materials. 2020;30(50):   Crossref logo
Link1 Link2 Link3 Link4

Zn2(Zn1-xFex)FeIII(PO4)3 · 2 H2O: Darstellung, Kristallstruktur und Mößbauer-Untersuchung / Zn2(Zn1-xFex)FeIII(PO4)3 · 2 H2O: Preparation, Crystal Structure and Mössbauer Investigation
Zeitschrift für Naturforschung B. 1990;45(9):1255-1261   Crossref logo
Link1 Link2 Link3

Synthesis and electrochemical properties of Zn2Ti3O8/g-C3N4 composites as anode materials for Li-ion batteries
Dalton Transactions. 2021;50(32):11137-11146   Crossref logo
Link1

Zn3V4(PO4)6: A New Rocking-Chair-Type Cathode Material with High Specific Capacity Derived from Zn2+/H+ Cointercalation for Aqueous Zn-Ion Batteries
ACS Applied Materials & Interfaces. 2022;14(28):32066-32074   Crossref logo
Link1 Link2

ChemInform Abstract: Electrochemical Zinc-Ion Intercalation Properties and Crystal Structures of ZnMo6S8and Zn2Mo6S8Chevrel Phases in Aqueous Electrolytes.
ChemInform. 2016;47(23):   Crossref logo
Link1 Link2

Supramolecular Organic Nanowires of 2,6‐Naphthalene Dicarboxylic Acid Observed in the Lamellar Space of Zn3(PO4)4 and Zn1.6Co1.4(PO4)4 Host Lattices
ChemistrySelect. 2022;7(36):   Crossref logo
Link1 Link2 Link3

Structural impact of Zn-insertion into monoclinic V2(PO4)3: implications for Zn-ion batteries
Journal of Materials Chemistry A. 2019;7(12):7159-7167   Crossref logo
Link1 Link2

Electronic and optical properties of ternary alloys ZnxCd1−xS, ZnxCd1−xSe, ZnSxSe1−x, MgxZn1−xSe
Materials Science-Poland. 2017;35(1):32-39   Crossref logo
Link1 Link2