[1] Y. Wang, D.Y.C. Leung, J. Xuan and H. Wang,
Renew. Sustain. Energy Rev.,
2016,
65, 961–977.
[2] Y. Wang, D.Y.C. Leung, J. Xuan and H. Wang,
Renew. Sustain. Energy Rev.,
2017,
75, 775–795.
[3] M. Gabbasa, K. Sopian, A. Fudholi and N. Asim,
Int. J. Hydrogen Energy,
2014,
39(
31), 17765–17778.
[4] B. Paul and J. Andrews,
Renew. Sustain. Energy Rev.,
2017,
79, 585–599.
[5] T. Sadhasivam, K. Dhanabalan, S.-H. Roh, T.-H. Kim, K.-W. Park, S. Jung, M. D. Kurkuri and H.-Y. Jung,
Int. J. Hydrogen Energy,
2017,
42(
7), 4415–4433.
[6] E. Wagner and H.-J. Kohnke,
Fuel Cells,
2020,
20(
6), 718–729.
[7] S. Zhao, L. Yan, H. Luo, W. Mustain and H. Xu,
Nano Energy,
2018,
47, 172–198.
[8] A. Lim, J. Kim, H. J. Lee, H.-J. Kim, S. J. Yoo, J. H. Jang, Y.-E. Sung and H. S. Park,
Appl. Catal. B,
2020,
272, 118955.
[9] A. Lim, H.-Y. Jeong, Y. Lim, J. Y. Kim, H. Y. Park, J. H. Jang, Y. E. Sung, J. M. Kim and H. S. Park, Sci. Adv., 2021, 7(13), eabf7866.
[10] S. E. Jang and H. Kim,
J. Am. Chem. Soc.,
2010,
132(
42), 14700–14701.
[11] M. Prestat,
J. Power Sources,
2023,
556, 232469.
[12] J. W. D. Ng, M. Tang and T. F. Jaramillo,
Energy Environ. Sci.,
2014,
7, 2017–2024.
[13] M. Hren, M. Božič, D. Fakin, K. S. Kleinschek and S. Gorgieva,
Sustainable Energy Fuels,
2021,
5, 604–637.
[14] G. Das, J.-H. Choi, P. K. T. Nguyen, D.-J. Kim and Y. S. Yoon,
Polymers,
2022,
14(
6), 1197.
[15] Z. Feng, G. Gupta and M. Mamlouk,
Int. J. Hydrogen Energy.,
2023,
48(
66), 25830–25858.
[16] X. Peng, Z. Taie, J. Liu, Y. Zhang, X. Peng, Y. N. Regmi, J. C. Fornaciari, C. Capuano, D. Binny, N. N. Kariuki, D. J. Myers, M. C. Scott, A. Z. Weber and N. Danilovic,
Energy Environ. Sci.,
2020,
13, 4872–4881.
[17] J. W. D. Ng, Y. Gorlin, T. Hatsukade and T. F. Jaramillo, Adv. Energy Mater., 2013, 3(12), 1545–1550.
[18] S. Dresp, F. Luo, R. Schmack, S. Kühl, M. Gliech and P. Strasser,
Energy Environ. Sci.,
2016,
9, 2020–2024.
[19] G. Chen, H. Zhang, H. Ma and H. Zhong,
Electrochim. Acta,
2009,
54(
23), 5454–5462.
[20] S. Kim, M. Her, Y. Kim, C.-Y. Ahn, S. Park, Y.-H. Cho and Y.-E. Sung,
Electrochim. Acta,
2021,
400, 139439.
[21] M. S. Cha, J. E. Park, S. Kim, S.-H. Han, S.-H. Shin, S. H. Yang, T.-H. Kim, D. M. Yu, S. So, Y. T. Hong, S. J. Yoon, S.-G. Oh, S. Y. Kang, O.-H. Kim, H. S. Park, B. Bae, Y.-E. Sung, Y.-H. Cho and J. Y. Lee,
Energy Environ. Sci.,
2020,
13, 3633–3645.
[22] J. E. Park, M. Karuppannan, O. J. Kwon, Y.-H. Cho and Y.-E. Sung,
J. Ind. Eng. Chem.,
2019,
80, 527–534.
[23] S. S. Latthe, C. Terashima, K. Nakata and A. Fujishima,
Molecules,
2014,
19(
4), 4256–4283.
[24] K.-Y. Law,
J. Phys. Chem. Lett.,
2014,
5(
4), 686–688.
[25] J. Liu, Z. Kang, D. Li, M. Pak, S. M. Alia, C. Fujimoto, G. Bender, Y. S. Kim and A. Z. Weber,
J. Electrochem. Soc.,
2021,
168(
5), 054522.
[26] T. J. Omasta, L. Wang, X. Peng, C. A. Lewis, J. R. Varcoe and W. E. Mustain,
J. Power Sources,
2018,
375, 205–213.
[27] A. Serov, I. V. Zenyuk, C. G. Arges and M. Chatenet,
J. Power Sources,
2018,
375, 149–157.
[28] C. E. Diesendruck and D. R. Dekel,
Water Curr. Opin. Electrochem.,
2018,
9, 173–178.
[29] A. R. Parker and C. R. Lawrence,
Nature,
2001,
414, 33–34.
[30] Y. Zheng, H. Bai, Z. Huang, X. Tian, F.-Q. Nie, Y. Zhao, J. Zhai and L. Jiang,
Nature,
2010,
463, 640–643.
[31] G. Fang, W. Li, X. Wang and G. Qiao,
Langmuir,
2008,
24(
20), 11651–11660.
[32] H. Wang, J. Ding, L. Dai, X. Wang and T. Lin,
J. Mater. Chem.,
2010,
20, 7938–7940.
[33] J. Wu, N. Wang, L. Wang, H. Dong, Y. Zhao and L. Jiang,
Soft Matter,
2012,
8, 5996–5999.
[34] A. Carlson, P. Shapturenka, B. Eriksson, G. Lindbergh, C. Lagergren and R. W. Lindström,
Electrochim. Acta,
2018,
277, 151–160.
[35] M. Grandi, K. Mayer, M. Gatalo, G. Kapun, F. Ruiz-Zepeda, B. Marius, M. Gaberšček and V. Hacker,
Energies,
2021,
14(
21), 7299.
[36] X. Wu and K. Scott,
J. Power Sources,
2012,
206, 14–19.
[37] M. M. Rana, G. Park, H.-J. Sun, H.-R. Rim, H.-K. Lee and J. Shim,
Korean J. Chem. Eng.,
2022,
39, 3295–3304.
[38] P. Rajkumar, M. M. Rana, B.-S. Kang, H.-J. Sun, G. Park, S.-Y. Kim, H.-K. Lee and J. Shim,
Catalysts,
2023,
13(
6), 941.