[1] N. S. Lewis,
MRS Bulletin,
2007,
32, 808–820.
[2] IEA, Key World Energy Statistics 2015. International energy agency, Paris, 2015.
[3] D. Larcher and J.-M. Tarascon,
Nat. Chem.,
2015,
7, 19–29.
[4] IRENA, Global Energy Transformation: A Roadmap to 2050. International Renewable Energy Agency, Abu Dhabi, 2018.
[5] E. Barbour, I. A. G. Wilson, J. Radcliffe, Y. Ding and Y. Li,
Renew. Sustain. Energy Rev.,
2016,
61, 421–432.
[6] B. Dunn, H. Kamath and J.-M. Tarascon,
Science,
2011,
334, 928–935.
[7] B. Bolund, H. Bernhoff and M. Leijon,
Renew. Sustain. Energy Rev.,
2007,
11(
2), 235–258.
[8] Precedence Research, Energy Storage Systems Market Size, Share, and Trends 2024 to 2034, 2022..
[9] U. Herrmann, B. Kelly and H. Price,
Energy,
2004,
29(
5-6), 883–893.
[10] B. E. Conway,
J. Electrochem. Soc.,
1991,
138, 1539–1548.
[11] J. A. Turner,
Science,
2004,
305, 972–974.
[12] X. Ji,
Energy Environ. Sci.,
2019,
12, 3203–3224.
[13] M. Li, J. Lu, Z. Chen and K. Amine, Adv. Mater., 2018, 30(33), 1800561.
[14] S. Chu and A. Majumdar,
Nature,
2012,
488, 294–303.
[15] L. Lu, X. Han, J. Li, J. Hua and M. Ouyang,
J. Power Sources,
2013,
226, 272–288.
[16] A. Basile, M. Hilder, F. Makhlooghiazad, C. Pozo-Gonzalo, D. R. MacFarlane, P. C. Howlett and M. Forsyth, Adv. Energy Mater., 2018, 8(17), 1703491.
[17] P. Ribière, S. Grugeon, M. Morcrette, S. Boyanov, S. Laruelle and G. Marlair,
Energy Environ. Sci.,
2012,
5(
1), 5271–5280.
[18] Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi and B. Li,
J. Energy Chem.,
2021,
59(
8), 83–99.
[19] K. Chayambuka, G. Mulder, D. L. Danilov and P. H. L. Notten, Adv. Energy Mater., 2020, 10(38), 2001310.
[20] Q. Wang, B. Mao, S. I. Stoliarov and J. Sun,
Prog. Energy Combust. Sci.,
2019,
73, 95–131.
[21] G. Zubi, R. Dufo-López, M. Carvalho and G. Pasaoglu,
Renew. Sustain. Energy Rev.,
2018,
89, 292–308.
[22] X. Wang, E. Yasukawa and S. Kasuya,
J. Electrochem. Soc.,
2001,
148, A1066–A1071.
[23] K. Xu, S. Zhang, J. L. Allen and T. R. Jow,
J. Electrochem. Soc.,
2002,
149, A1079–A1082.
[24] M. Armand, F. Endres, D. R. MacFarlane, H. Ohno and B. Scrosati,
Nat. Mater.,
2009,
8, 621–629.
[25] B. Garcia, S. Lavallée, G. Perron, C. Michot and M. Armand,
Electrochim. Acta,
2004,
49(
26), 4583–4588.
[26] A. Manthiram, X. Yu and S. Wang, Nat. Rev. Mater., 2017, 2, 16103.
[27] Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo and Y. Huang, Adv. Mater., 2018, 30(17), 1705702.
[28] D. Fenton, J. M. Parker and P. V. Wright,
Polymer,
1973,
14(
11), 589.
[29] C. Yang, J. Chen, T. Qing, X. Fan, W. Sun, M. S. Ding, O. Borodin, J. Vantamanu, M. A. Schroeder, N. Eidson, C. Wang and K. Xu,
Joule,
2017,
1(
1), 122–132.
[30] L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang and K. Xu,
Science,
2015,
350, 938–943.
[31] M. Ue, H. Tokuda, T. Kawai, M. Yanagidate and Y. Otake,
ECS Trans.,
2009,
16, 173.
[32] K. Takechi, Y. Kato and Y. Hase,
Adv. Mater.,
2015,
27(
15), 2501–2506.
[33] A. Basile, M. Hilder, F. Makhlooghiazad, C. Pozo-Gonzalo, D. R. MacFarlane, P. C. Howlett and M. Forsyth, Adv. Energy Mater., 2018, 8(17), 1703491.
[34] K. Ishiguro, Y. Nakata, M. Matsui, I. Uechi, Y. Takeda, O. Yamamoto and N. Imanishi,
J. Electrochem. Soc.,
2013,
160, A1690.
[35] D. Ren, X. Feng, L. Liu, H. Hsu, L. Lu, L. Wang, X. He and M. Ouyang,
Energy Storage Mater.,
2021,
34, 563–573.
[36] Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun and C. Chen,
J. Power Sources,
2012,
208, 210–224.
[37] M. Henriksen, K. Vågsæther, J. Lundberg, S. Forseth and D. Bjerketvedt,
J. Hazard. Mater.,
2019,
371, 1–7.
[38] D. Chao, W. Zhou, F. Xie, C. Ye, H. Li, M. Jaroniec and S.-Z. Qiao, Sci. Adv., 2020, 6, eaba4098.
[39] L. E. Blanc, D. Kundu and L. F. Nazar,
Joule,
2020,
4(
4), 771–799.
[40] H. Jia, Z. Wang, B. Tawiah, Y. Wang, C.-Y. Chan, B. Fei and F. Pan,
Nano Energy,
2020,
70, 104523.
[41] L. Butterwick and G. D. W. Smith,
Resour. Conserv. Recycl.,
1986,
9(
3), 281–292.
[42] Y. Ru, S. Zheng, H. Xue and H. Pang,
Chem. Eng. J.,
2020,
382, 122853.
[43] T. Nagaura, 4th International Rechargeable Battery Seminar. Deerfield Beach, FL, USA, 1990.
[44] In: T Nagaura, H Shimotake editors. Progress in Batteries and Solar Cells. JEC Press, US, 1990. p.209–217.
[45] M. Winter, K.-C. Moeller and J. O. Besenhard, Besenhard, Carbonaceous and graphitic anodes. In: G. A Nazri, G Pistoia editors. Lithium Batteries. Springer, Boston, MA, 2003. p.145–194.
[46] Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes and X. Sun, Adv. Energy Mater., 2016, 6(8), 1502175.
[47] S. Liu, G. L. Pan, G. R. Li and X. P. Gao,
J. Mater. Chem. A,
2015,
3, 959–962.
[48] H. Lahan, R. Boruah, A. Hazarika and S. K. Das,
J. Phys. Chem. C,
2017,
121(
47), 26241–26249.
[49] H. Lahan and S. K. Das,
J. Power Sources,
2019,
413, 134–138.
[50] M. Hulot, CR Hebd. Acad. Sci, 1855, 40, 1148.
[51] D. Tommasi, Traité Théorique Et Pratique d'Électrochimie. George Carre, Paris, 1889. p.131.
[52] C. H. Brown, Galvanic Battery, US Patent 503,567 1893.
[53] S. Ruben, Primary cell, US Patent 2,638,489 1953.
[54] S. Zaromb,
J. Electrochem. Soc.,
1962,
109, 1125.
[55] D. Peramunage, R. Dillon and S. Licht,
J. Power Sources,
1993,
45(
3), 311–323.
[56] N. Jayaprakash, S. K. Das and L. A. Archer,
Chem. Commun.,
2011,
47, 12610–12612.
[57] M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B.-J. Hwang and H. Dai,
Nature,
2015,
520, 324–328.
[58] D. J. Kim, D.-J. Yoo, M. T. Otley, A. Prokofjevs, C. Pezzato, M. Owczarek, S. J. Lee, J. W. Choi and J. F. Stoddart,
Nat. Energy,
2019,
4, 51–59.
[59] Z. Lin, M. Mao, C. Yang, Y. Tong, Q. Li, J. Yue, G. Yang, Q. Zhang, L. Hong, X. Yu, L. Gu, Y.-S. Hu, H. Li, X. Huang, L. Suo and L. Chen, Sci. Adv., 2021, 7, eabg6314.
[60] Q. Pang, J. Meng, S. Gupta, X. Hong, C. Y. Kwok, J. Zhao, Y. Jin, L. Xu, O. Karahan, Z. Wang, S. Toll, L. Mai, L. F. Nazar, M. Balasubramanian, B. Narayanan and D. R. Sadoway,
Nature,
2022,
608, 704–711.
[61] Y. Guo, W. Wang, H. Lei, M. Wang and S. Jiao, Adv. Mater., 2022, 34(13), 2110109.
[62] G. R. Pastel, Y. Chen, T. P. Pollard, M. A. Schroeder, M. E. Bowden, A. Zheng, N. T. Hahn, L. Ma, V. Murugesan, J. Ho, M. Garaga, O. Borodin, K. Mueller, S. Greenbaum and K. Xu,
Energy Environ. Sci.,
2022,
15, 2460–2469.
[63] X. Wang, Z. Xi and Q. Zhao, Ind. Chem. Mater, 2024, Advance Article..
[64] T. Dong, K. L. Ng, Y. Wang, O. Voznyy and G. Azimi, Adv. Energy Mater., 2021, 11(20), 2100077.
[65] Z. Tong, R. Lian, R. Yang, T. Kang, J. Feng, D. Shen, Y. Wu, X. Cui, H. Wang, Y. Tang and C.-S. Lee,
Energy Storage Mater.,
2022,
44, 497–507.
[66] M. Trachtman, G. D. Markham, J. P. Glusker, P. George and C. W. Bock,
Inorg. Chem.,
1998,
37(
17), 4421–4431.
[67] F. Xiao, R. Yang and Z. Liu,
Int. J. Hydrogen Energy.,
2022,
47(
1), 365–386.
[68] Z. Zhao, Z. Zhang, T. Xu, W. Wang, B. Wang and X. Yu,
J. Am. Chem. Soc.,
2024,
146(
3), 2257–2266.
[69] R. Tao, C. Gao, E. Xie, B. Wang and B. Lu,
Chem. Sci.,
2022,
13, 10066–10073.
[70] W. Huang, K. Zhang, B. Yuan, L. Yang and M. Zhu,
Energy Storage Mater.,
2022,
50, 152–160.
[71] L. T. Hieu, S. So, I. T. Kim and J. Hur,
Chem. Eng. J.,
2021,
411, 128584.
[72] Q. Hao, F. Chen, X. Chen, Q. Meng, Y. Qi and N. Li,
Electrochim. Acta,
2022,
421, 140495.
[73] Y.-X. Yu,
J. Phys. Chem. C,
2016,
120(
10), 5288–5296.
[74] H. Yan, W. Li, H. Li, X. Fan and M. Zhu,
Prog. Org. Coat.,
2019,
135, 156–167.
[75] X. Zhu, X. Li, M. L. K. Essandoh, J. Tan, Z. Cao, X. Zhang, P. Dong, P. M. Ajayan, M. Ye and J. Shen,
Energy Storage Mater.,
2022,
50, 243–251.
[76] L. Yao, S. Ju, T. Xu, W. Wang and X. Yu,
ACS Nano,
2023,
17(
24), 25027–25036.
[77] Q. Zhao, M. J. Zachman, J. Zheng, L. F. Kourkoutis and L. A. Archer, Sci. Adv., 2018, 4, eaau8131.
[78] R. Bai, J. Yang, G. Li, J. Luo and W. Tang,
Energy Storage Mater.,
2021,
41, 41–50.
[79] S. Kumar, T. Salim, V. Verma, W. Manalastas Jr and M. Srinivasan,
Chem. Eng. J.,
2022,
435, 134742.
[80] K. Nakayama, H. Miki, T. Nakagawa, K. Noi, Y. Sugawara, S.. Kobayashi, K. Sakurai, H. Iba, A. Kuwabara, Y. Ikuhara and T. Abe,
J. Mater. Chem. A,
2024,
12, 8350–8358.
[81] B.-E. Jia, E. Hu, Z. Hu, J. J. Liew, Z. Hong, Y. Guo, M. Srinivasan, Q. Zhu, J. Xu, J. Chen, H. Pan and Q. Yan,
Energy Storage Mater.,
2024,
65, 103141.
[82] C. B. Breslin and W. M. Carroll,
Corros. Sci.,
1992,
33(
11), 1735–1746.
[83] H. Yu, C. Lv, C. Yan and G. Yu, Small Methods, 2023, 8(6), 2300758.
[84] Q. Ran, H. Shi, H. Meng, S.-P. Zeng, W.-B. Wan, W. Zhang, Z. Wen, X.-Y. Lang and Q. Jiang, Nat. Commun., 2022, 13, 576.
[85] A. Hirata, P. Guan, T. Fujita, Y. Hirotsu, A. Inoue, A. R. Yavari, T. Sakurai and M. Chen,
Nat. Mater.,
2011,
10, 28–33.
[86] D. C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M. D. Demetriou and W. L. Johnson,
Nature,
2008,
451, 1085–1089.
[87] X. Wang, G. Pawar, Y. Li, X. Ren, M. Zhang, B. Lu, A. Banerjee, P. Liu, E. J. Dufek, J.-G. Zhang, J. Xiao, J. Liu, Y. S. Meng and B. Liaw,
Nat. Mater.,
2020,
19, 1339–1345.
[88] Z. Jia, X. Duan, P. Qin, W. Zhang, W. Wang, C. Yang, H. Sun, S. Wang and L.-C. Zhang, Adv. Funct. Mater., 2017, 27(38), 1702258.
[89] G. Wu, X. Zheng, P. Cui, H. Jiang, X. Wang, Y. Qu, W. Chen, Y. Lin, H. Li, X. Han, Y. Hu, P. Liu, Q. Zhang, J. Ge, Y. Yao, R. Sun, Y. Wu, L. Gu, X. Hong and Y. Li, Nat. Commun., 2019, 10, 4855.
[90] C. Yan, C. Lv, B. E. Jia, L. Zhong, X. Cao, X. Guo, H. Liu, W. Xu, D. Liu, L. Yang, J. Liu, H. H. Hng, W. Chen, L. Song, S. Li, Z. Liu, Q. Yan and G. Yu,
J. Am. Chem. Soc.,
2022,
144(
25), 11444–11455.
[91] P. M. Natishan and W. E. O’grady,
J. Electrochem. Soc.,
2014,
161(
9), C421.
[92] Y. Zhang, Y. Bian, Z. Lv, Y. Han and M.-C. Lin,
ACS Appl. Mater. Interfaces,
2021,
13(
31), 37091–37101.
[93] Y.-H. Wu, W.-J. Lin, T.-H. Tsai and M.-C. Lin,
ACS Appl. Energy Mater.,
2024,
7(
9), 3957–3967.