[1] F. F. Abdi,
J. Phys. Chem. C,
2012,
116(
17), 9398–9404.
[2] K. Ham, J. Lee, K. Lee and J. Lee,
J. Energy Chem.,
2022,
71(
8), 580–587.
[3] J. D. Holladay, J. Hu, D. L. King and Y. Wang,
Catal. Today,
2009,
139(
4), 244–260.
[4] S. Damyanova, B. Pawelec, K. Arishtirova and J. L. G. Fierro,
Int. J. Hydrogen Energy,
2012,
37(
21), 15966–15975.
[5] E. Park, S. S. Patil, H. Lee, V. S. Kumbhar and K. Lee,
Nanoscale,
2021,
13, 16932–16941.
[6] M. Carmo, D. L. Fritz, J. Mergel and D. Stolten,
Int. J. Hydrogen Energy,
2013,
38(
12), 4901–4934.
[7] J. Chi and H. Yu,
Chinese J. Catal.,
2018,
39(
3), 390–394.
[8] H. S. Chavan, J. Yoo, D. R. Patil, J. Kim, Y. Choi and K. Lee,
J. Alloys Compd.,
2024,
999, 174911.
[9] J.. O’M Bockris and T. N. Veziroglu, Int. J. Hydrogen Energy, 2007, 32(12), 1605–1610.
[10] C. M. Kalamaras and A. M. Efstathiou, Conference Papers in Science, 2013, 690627.
[11] A. Steinfeld,
Int. J. Hydrogen Energy,
2002,
27(
6), 611–619.
[12] L. R. Nagappagari, T. D. Le, M. J. Ahemad, G.-J. Oh, G.-S. Shin, K. Lee and Y.-T. Yu,
Mater. Today Nano,
2023,
22, 100325.
[13] M. Wang, Z. Wang, X. Gong and Z. Guo,
Renew. Sustain. Energy Rev.,
2014,
29, 573–588.
[14] K. Zeng and D. Zhang,
Prog. Energ. Combust. Sci.,
2010,
36(
3), 307–326.
[15] E. Park, J. Yoo and K. Lee,
Sustain. Energy Fuels,
2024,
8, 1448–1456.
[16] N. S. Rayit, J. I. Chowdhury and N. Balta-Ozkan,
J. Energy Storage,
2021,
39, 102641.
[17] S. S. Makridis, Hydrogen storage and compression. In: R Carriveau, D. S-K Ting editors. Methane and Hydrogen for Energy Storage. 2016. p.1–28.
[18] M. Brenton, J. Barton, D. Strickland, J. Wilson and U. Wijayantha-Kahagala, In: Lead-acid battolyser concept, 11th International Conference on Power Electronics, Machines and Drives (PEMD 2022); Newcastle, UK. 2022, pp 64–70.
[19] Y. Yang, S. Bremner, C. Menictas and M. Kay,
Renew. Sustain. Energy Rev.,
2018,
91, 109–125.
[20] V. Amstutz, K. E. Toghill, F. Powlesland, H. Vrubel, C. Comninellis, X. Hu and H. H. Girault,
Energy Environ. Sci.,
2014,
7, 2350–2358.
[21] F. M. Mulder, B. M. H. Weninger, J. Middelkoop, F. G. B. Ooms and H. Schreuders,
Energy Environ. Sci.,
2017,
10, 756–764.
[22] B. Jenkins, D. Squires, J. Barton, D. Strickland, K. G. U. Wijayantha, J. Carroll, J. Wilson, M. Brenton and M. Thomson,
Energies,
2022,
15(
16), 5796.
[23] M. D. Symes and L. Cronin,
Nature Chem.,
2013,
5, 403–409.
[24] D. Reynard, G. Bolik-Coulon, S. Maye and H. H. Girault,
Chem. Eng. J.,
2021,
407, 126721.
[25] H. Dotan, A. Landman, S. W. Sheehan, K. D. Malviya, G. E. Shter, D. A. Grave, Z. Arzi, N. Yehudai, M. Halabi, N. Gal, N. Hadari, C. Cohen, A. Rothschild and G. S. Grader,
Nat. Energy,
2019,
4, 786–795.
[26] F. Zhang, H. Zhang, M. Salla, N. Qin, M. Gao, Y. Ji, S. Huang, S. Wu, R. Zhang, Z. Lu and Q. Wang,
J. Am. Chem. Soc.,
2021,
143(
1), 223–231.
[27] T. Shigematsu, SEI Technical Review, 2011, 73, 4–13.
[28] A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick and Q. Liu,
J. Appl. Electrochem.,
2011,
41, 1137–1164.
[29] A. Dinesh, S. Olivera, K. Venkatesh, M. S. Santosh, M. G. Priya, A. M. Asiri and H. B. Muralidhara,
Environ. Chem. Lett.,
2018,
16, 683–694.
[30] W.-F. Chen, C.-H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu and R. R. Adzic,
Energy Environ. Sci.,
2013,
6, 943–951.
[31] S. Wirth, F. Harnisch, M. Weinmann and U. Schröder,
Appl. Catal. B: Environ.,
2012,
126, 225–230.
[32] A. Mills, T. Russell and J. Chem. Soc.,
Faraday Trans.,
1991,
87, 1245–1250.
[33] P. Peljo, H. Vrubel, V. Amstutz, J. Pandard, J. Morgado, A. Santasalo-Aarnio, D. Lloyd, F. Gumy, C. R. Dennison, K. E. Toghill and H. H. Girault,
Green Chem.,
2016,
18, 1785–1797.
[34] Y. Li, D. Kienbaum, T. Lüth and M. Skyllas-Kazacos,
J. Energy Storage,
2024,
90, 111790.
[35] M. Skyllas-Kazacos, Secondary batteries–flow systems | Vanadium redox-flow batteries. In: J Garche editors. Encyclopedia of Electrochemical Power Sources. Elsevier, Amsterdam, 2009. p.444–453.
[36] M. M. Rusllim, A. A. Hamzah and A. S. M. Nizam, State of the art of all-vanadium redox flow battery: A research opportunities. In: International Conference on Green Technology & Ecosystems for Global Sustainable Development 2012; 8– 30 May 2012; Universitt of Tuzla, Bosnia. pp 1–8.
[37] D. Reynard and H. Girault,
Cell Rep. Phys. Sci.,
2021,
2(
9), 100556.
[38] H. J. Lee, S. Park and H. Kim,
J. Electrochem. Soc.,
2018,
165, A952.
[39] D. Reynard, S. Maye, P. Peljo, V. Chanda, H. H. Girault and S. Gentil,
Chem. - Eur. J.,
2020,
26(
32), 7250–7257.
[40] J. Huang, Y. Xie, L. Yan, B. Wang, T. Kong, X. Dong, Y. Wang and Y. Xia,
Energy Environ. Sci.,
2021,
14, 883–889.
[41] Q. Lei, B. Wang, P. Wang and S. Liu,
J. Energy Chem.,
2019,
38, 162–169.
[42] M. Nazemi, J. Padgett and M. C. Hatzell,
Energy Technol.,
2017,
5(
8), 1191–1194.
[43] Y. Li, J. Chen, P. Cai and Z. Wen,
J. Mater. Chem. A,
2018,
6, 4948–4954.
[44] N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu and H. M. Chen,
Chem. Soc. Rev.,
2017,
46, 337–365.
[45] S. Anantharaj, S. R. Ede, K. Karthick, S. S. Sankar, K. Sangeetha, P. E. Karthik and S. Kundu,
Energy Environ. Sci.,
2018,
11, 744–771.
[46] M. Zhou, Q. Weng, Z. I. Popov, Y. Yang, L. Y. Antipina, P. B. Sorokin, X. Wang, Y. Bando and D. Golberg,
ACS Nano,
2018,
12(
5), 4148–4155.
[47] S. Anantharaj, S. R. Ede, K. Sakthikumar, K. Karthick, S. Mishra and S. Kundu,
ACS Catal.,
2016,
6(
12), 8069–8097.
[48] J. Huang, Z. Guo, X. Dong, D. Bin, Y. Wang and Y. Xia,
Sci. Bull.,
2019,
64(
23), 1780–1787.
[49] C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong, Y. Li, C. Sun, X. Han, Y. Deng, N. Zhao and W. Hu,
Nat. Energy,
2020,
5, 440–449.
[50] U. Köhler, C. Antonius and P. Bäuerlein, J. Power Sources, 2004, 127(1–2), 45–52.
[51] M. Gong, Y. Li, H. Zhang, B. Zhang, W. Zhou, J. Feng, H. Wang, Y. Liang, Z. Fan, J. Liu and H. Dai,
Energy Environ. Sci.,
2014,
7, 2025–2032.
[52] X.-P. Gao, S.-M. Yao, T.-Y. Yan and Z. Zhou,
Energy Environ. Sci.,
2009,
2, 502–505.
[53] H. Wang, Y. Liang, M. Gong, Y. Li, W. Chang, T. Mefford, J. Zhou, J. Wang, T. Regier, F. Wei and H. Dai, Nat. Commun., 2012, 3, 917.
[54] J. Liu, M. Chen, L. Zhang, J. Jiang, J. Yan, Y. Huang, J. Lin, H. J. Fan and Z. X. Shen,
Nano Lett.,
2014,
14(
12), 7180–7187.
[55] C. Chakkaravarthy, P. Periasamy, S. Jegannathan and K. I. Vasu,
J. Power Sources,
1991,
35(
1), 21–35.
[56] G. Halpert,
J. Power Sources,
1984,
12(
3–4), 177–192.
[57] L. Li, P. Wang, Q. Shao and X. Huang,
Chem. Soc. Rev.,
2020,
49, 3072–3106.
[58] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li and Y. Ding,
Prog. Nat. Sci.,
2009,
19(
3), 291–312.
[59] B. M. H. Weninger and F. M. Mulder,
ACS Energy Lett.,
2019,
4(
2), 567–571.
[60] A. M. Raventos, G. Kluivers, J. W. Haverkort, F. M. Mulder and R. Kortlever,
Ind. Eng. Chem. Res.,
2021,
60(
30), 10988–10996.
[61] A. Iranzo and F. M. Mulder,
Mater. Adv.,
2021,
2, 5076–5088.
[62] J. P. Barton, R. J. L. Gammon and A. Rahil, Front. Energy Res., 2020, 8, 509052.
[63] J. Yang, C. Hu, H. Wang, K. Yang, J. B. Liu and H. Yan,
Int. J. Energy Res.,
2017,
41, 336–352.
[64] P. Ruetschi,
J. Power Sources,
1977,
2(
1), 3–120.
[65] C. Zhou, K. Bhonge and K. T. Cho,
Electrochim. Acta,
2020,
330, 135290.