[1] J. Rhyu, D. Zhuang, M. Z. Bazant and R. D. Braatz,
J. Electrochem. Soc.,
2024,
171(
7), 070544.
[2] Z. Li, X. Shi, M. Shi, C. Wei, F. Di and H. Sun, 2020 Asia Energy and Electrical Engineering Symposium (AEEES). Chengdu, China, 2020. p.753–757.
[3] Z. Sun, W. He, J. Wang and X. He,
Energies,
2024,
17(
11), 2487.
[4] E. Braco, I. S. Martin, P. Sanchis, A. Ursúa and D.-I. Stroe,
J. Energy Storage,
2022,
55, 105366.
[5] S. Azizighalehsari, J. Popovic, P. Venugopal and B. Ferreira, In: IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society; Toronto, ON, Canada. 2021, pp 1–6.
[6] S. M. Rezvanizaniani, Z. Liu, Y. Chen and J. Lee,
J. Power Sources,
2014,
256, 110–124.
[7] E. Din, C. Schaef, K. Moffat and J. T. Stauth,
IEEE Transactions on Power Electronics,
2017,
32(
7), 5688–5698.
[8] H. Leduc, R. Okamura, E. Kyeyune-Nyombi, K. Huynh and S. Chung,
Meet. Abstr.,
2020,
MA2020-02, 1584.
[9] P. Křivík, S. Vaculík, P. Bača and J. Kazelle, J. Energy Storage, 2019, 21, 581–585.
[10] Y. Liu, L. Wang, D. Li and K. Wang, Prot. Control Mod. Power Syst., 2023, 8, 41.
[11] A. Savca, Application of Electrochemical Impedance Spectroscopy (EIS) on Module Level Li-ion Batteries for Echelon Utilization, Bachelor, University of Twente Enschede, 2022..
[12] B. G. Pollet, I. Staffell, J. L. Shang and V. Molkov, Fuel-cell (hydrogen) electric hybrid vehicles, in: Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance. Woodhead Publishing,, 2014. p.685–735.
[13] P. G. Pereirinha, Electric vehicles. In: J García editors. Encyclopedia of Electrical and Electronic Power Engineering. Elsevier, 2023. p.350–387.
[14] M. A. Delucchi and T. E. Lipman, Lifetime cost of battery, fuel-cell, and plug-in hybrid electric vehicles, in: Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market. Elsevier, 2010. p.19–60.
[15] S. Narayanaswamy, S. Schlueter, S. Steinhorst, M. Lukasiewycz, S. Chakraborty and H. Hoster, ACM Trans. Des. Autom. Electron. Syst., 2016, 21(4), 60.
[16] T. Abe, H. Fukuda, Y. Iriyama and Z. Ogumi,
J. Electrochem. Soc.,
2004,
151, A1120.
[17] J. Garche, P. T. Moseley and E. Karden, 5 - Lead–acid batteries for hybrid electric vehicles and battery electric vehicles. In: B Scrosati, J Garche, W Tillmetz editors. Advances in Battery Technologies for Electric Vehicles. Woodhead Publishing, 2015. p.75–101.
[18] M. Fetcenko, J. Koch and M. Zelinsky, 6 - Nickel–metal hydride and nickel–zinc batteries for hybrid electric vehicles and battery electric vehicles. In: B Scrosati, J Garche, W Tillmetz editors. Advances in Battery Technologies for Electric Vehicles. Woodhead Publishing, 2015. p.103–126.
[19] Z. Abdin and K. R. Khalilpour, Khalilpour, Single and polystorage technologies for renewable-based hybrid energy systems, in: Polygeneration with Polystorage for Chemical and Energy Hubs. Elsevier, 2018. p.77–131.
[20] S. Neupert and J. Kowal,
Batteries,
2023,
9(
7), 364.
[21] M. Messing, T. Shoa and S. Habibi, In: Lithium-Ion Battery Relaxation Effects, 2019 IEEE Transportation Electrification Conference and Expo (ITEC); Detroit, MI, USA. 2019, pp 1–6.
[22] A. Pérez, M. Benavides, H. Rozas, S. Seria and M. Orchard, Int. J. Progn. Heal. Manag.. 2018.9(3.
[23] L. Gan, F. Yang, Y. F. Shi and H. L. He,
IOP Conf. Ser.: Earth Environ. Sci.,
2017,
94, 012133.
[24] X. Meng, C. Cai, Y. Wang, Q. Wang and L. Tan, Front. Energy Res., 2022, 10, 1–14.
[25] S. Temiz, S. Erol, H. Kurban and M. M. Dalkilic,
J. Energy Storage,
2023,
64, 107085.
[26] S. Barcellona, S. Colnago, G. Dotelli, S. Latorrata and L. Piegari,
J. Energy Storage,
2022,
50, 104658.
[27] J. Shen, W. Ma, X. Shu, S. Shen, Z. Chen and Y. Liu,
Energy,
2023,
279, 128092.
[28] P. Reshma and V. J. Manohar,
J. Energy Storage,
2023,
68, 107573.
[29] L. A. Middlemiss, A. J. R. Rennie, R. Sayers and A. R. West,
Energy Reports,
2020,
6(
S5), 232–241.
[30] M. Sneha, N. Afijith, N. Murugesan and V. Jayaraman,
Org. Electron.,
2022,
113, 106698.
[32] C. Blanco, D. Anseán, V. M. García, F. Ferrero and M. Valledor,
Measurement,
2017,
106, 1–11.
[33] N. Meddings, M. Heinrich, F. Overney, J.-S. Lee, V. Ruiz, E. Napolitano, S. Seitz, G. Hids, R. Raccichini, M. Gaberšček and J. Park,
J. Power Sources,
2020,
480, 228742.
[34] Y. Li, M. Maleki and S. Banitaan,
J. Energy Storage,
2023,
73, 109185.
[35] B. O. Agudelo, W. Zamboni, E. Monmasson and G. Spagnuolo, O In: Identification of battery circuit model from EIS data, Conférence des Jeunes Chercheurs en Génie Electrique (JCGE 2019), Jun 2019; Saint Pierre d’Oléron, France. hal02915697.
[36] D. Andre, M. Meiler, K. Steiner, H. Walz, T. Soczka-Guth and D. U. Sauer,
J. Power Sources,
2011,
196(
12), 5349–5356.
[37] A. Eddahech, O. Briat, E. Woirgard and J. M. Vinassa,
Microelectron. Reliab.,
2012,
52(
9–10), 2438–2442.
[38] A. Zenati, P. Desprez and H. Razik, In: Estimation of the SOC and the SOH of li-ion batteries, by combining impedance measurements with the fuzzy logic inference, IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society; Glendale, USA. 2010, pp 1773–1778.
[39] W. Haiying, H. Long, S. Jianhua, L. Shuanquan and W. Feng, In: Proceedings of 2011 6th International Forum on Strategic Technology; Harbin, China. 2011, pp 261–264.
[40] R. Mingant, J. Bernard, V. S. Moynot, A. Delaille and S. Mailley,
ECS Trans.,
2011,
33, 41.
[41] B. Balagopal and M.-Y. Chow, In: The state of the art approaches to estimate the state of health (SOH) and state of function (SOF) of lithium Ion batteries, 2015 IEEE 13th International Conference on Industrial Informatics (INDIN); Cambridge, UK. 2015, pp 1302–1307.
[42] M.-F. Ge, Y. Liu, X. Jiang and J. Liu,
Measurement,
2021,
174, 109057.
[43] J. Wang, L. Zhang, D. Xu, P. Zhang and G. Zhang, Mathematical Problems in Engineering, 2019, (1), 6019236.
[44] X. Chen, M. Geng, Q. Wang, J. Shen, Y. He and Z. Ma, Energy Storage Sci. Technol., 2022, 11(9), 2995–3002.
[45] A. Hammouche, E. Karden and R. W. De Doncker,
J. Power Sources,
2004,
127(
1–2), 105–111.
[46] O. Tröltzsch, O. Kanoun and H.-R. Tränkler, Electrochim. Acta, 2006, 51(8–9), 1664–1672.
[47] H. C. Chen, S. R. Chou, H. C. Chen, S. L. Wu and L. R. Chen, In: Fast Estimation of State of Charge for Lithium-Ion Battery, 2014 International Symposium on Computer, Consumer and Control; Taichung, taiwan. 2014, pp 284–287.
[48] X. Wang, X. Wei and H. Dai,
J. Energy Storage,
2019,
21, 618–631.
[49] S. Cruz-Manzo, P. Greenwood and R. Chen,
J. Electrochem. Soc.,
2017,
164(
7), A1446.
[50] C. Lyu, T. Zhang, W. Luo, G. Wei, B. Ma and L. Wang, In: SOH Estimation of lithium-ion batteries based on fast time domain impedance spectroscopy, 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA); Xi'an, China. 2019, pp 2142–2147.
[51] T. N. Gücin and L. Ovacik,
IEEE Trans. Power Electron.,
2020,
35(
4), 4365–4375.
[52] M. Messing, T. Shoa and S. Habibi,
J. Energy Storage,
2021,
43, 103210.
[53] Y. Xi, Y. Liu, Y. Xing, M. Dong and R. Chen, In: SOC estimation for lithium-ion batteries based on electrochemical impedance spectroscopy and equivalent circuit model, 22nd International Symposium on High Voltage Engineering (ISH 2021); Xi'an, China. 2021, pp 2225–2229.
[54] I. Ezpeleta, L. Freire, C. Mateo-Mateo, X. R. Nóvoa, A. Pintos and S. Valverde-Pérez, ChemistrySelect, 2022, 7(10), e202104464.
[55] M. Mohsin, A. Picot and P. Maussion,
J. Energy Storage,
2022,
52, 104647.
[56] M. A. Tonima, A. DeHart, D. Tabakci, P. Tisapramotkul, A. Munro-West, A. Mehra and T. Shoa, In: Electrochemical impedance spectroscopy (EIS) and machine learning based battery state of health (SoH) estimation, 2023 IEEE International Conference on Prognostics and Health Management (ICPHM); Montreal, Canada. 2023, pp 212–223.
[57] Q. Li, D. Yi, G. Dang, H. Zhao, T. Lu, Q. Wang, C. Lai and J. Xie,
World Electr. Veh. J.,
2023,
14(
12), 321.
[58] L. Anekal and S. Williamson, In: Adaptive battery state-of-charge estimation using aging-driven equivalent circuit parameterization and electrochemical impedance spectroscopy, 2024 IEEE Transportation Electrification Conference and Expo (ITEC); Chicago, USA. 2024, pp 1–6.
[59] R. Liu, D. Zhang, Z. Li, P. Bauer and Z. Qin, In: Feature extraction from electrochemical impedance spectroscopy for state of health estimation of lithium-ion batteries under different temperatures, 2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia); Chengdu, China. 2024, pp 3374–3378.
[60] B. Xia, Z. Qin and H. Fu,
J. Power Sources,
2024,
603, 234413.
[61] R. Mingant, J. Bernard and V. Sauvant-Moynot,
World Electr. Veh. J.,
2012,
5(
2), 405–411.
[62] A. Guha and A. Patra,
IEEE Trans. Instrum. Meas.,
2018,
67(
8), 1836–1849.
[63] J. Li, S. Zhao, M. S. Miah and M. Niu,
Energy Rep.,
2023,
10, 3629–3638.
[64] S. Ma, M. Jian, P. Tao, C. Song, J. Wu, J. Wang, T. Deng and W. Shang,
Prog. Nat. Sci. Mater. Int.,
2018,
28(
6), 653–666.
[65] Y. Ji, Y. Zhang and C.-Y. Wang,
J. Electrochem. Soc.,
2013,
160(
4), A636–A649.
[66] S. S. Zhang, K. Xu and T. R. Jow,
Electrochim. Acta,
2004,
49(
7), 1057–1061.
[67] S. H. Ahmed, X. Kang and S. O. B. Shrestha, J. Energy Resour. Technol., 2015, 137(3), 031901.
[68] H. P. G. J. Beelen, L. H. J. Raijmakers, M. C. F. Donkers, P. H. L. Notten and H. J. Bergveld,
IFAC-PapersOnLine,
2015,
48(
15), 383–388.
[69] S. R. Nelatury and P. Singh,
J. Power Sources,
2002,
112(
2), 621–625.
[70] S. R. Nelatury and P. Singh,
J. Power Sources,
2004,
132(
1–2), 309–314.
[71] J. L. Jespersen, A. E. Tønnesen, K. Nørregaard, L. Overgaard and F. Elefsen,
World Electr. Veh. J.,
2009,
3(
1), 127–133.
[72] N. Ogihara, S. Kawauchi, C. Okuda, Y. Itou, Y. Takeuchi and Y. Ukyo,
J. Electrochem. Soc.,
2012,
159(
7), A1034–A1039.
[73] N. Ogihara, Y. Itou, T. Sasaki and Y. Takeuchi,
J. Phys. Chem. C,
2015,
119(
9), 4612–4619.
[74] M. Itagaki, K. Honda, Y. Hoshi and I. Shitanda,
J. Electroanal. Chem.,
2015,
737, 78–84.
[75] R. Scipioni, P. S. Jørgensen, C. Graves, J. Hjelm and S. H. Jensen,
J. Electrochem. Soc.,
2017,
164(
9), A2017–A2030.
[76] N. Ogihara, Y. Itou and S. Kawauchi,
J. Phys. Chem. Lett.,
2019,
10(
17), 5013–5018.
[77] J. Fang, W. Shen, S. H. S. Cheng, S. Ghashghaie, H. K. Shahzad and C. Y. Chung,
J. Power Sources,
2019,
441, 227202.
[78] Y. Zhang, Q. Tang, Y. Zhang, J. Wang, U. Stimming and A. A. Lee, Nat. Commun., 2020, 11, 1706.
[79] M. Kuipers, P. Schröer, T. Nemeth, H. Zappen, A. Blömeke and D. U. Sauer,
J. Energy Storage,
2020,
30, 101517.
[80] M. Crescentini, A. D. Angelis, R. Ramilli, G. D. Angelis, M. Tartagni, A. Moschitta, P. A. Traverso and P. Carbone,
IEEE Trans. Instrum. Meas.,
2021,
70, 1–11.
[81] R. Ma, J. He and Y. Deng,
J. Energy Storage,
2022,
54, 105346.
[82] J. Guo, S. Jin, X. Sui, X. Huang, Y. Xu, Y. Li, P. K. Kristensen, D. Wang, K. Pedersen, L. Gurevich and D.-I. Stroe,
J. Mater. Chem. A,
2023,
11, 41–52.
[83] J. Jiang, Z. Lin, Q. Ju, Z. Ma, C. Zheng and Z. Wang,
Energy Procedia,
2017,
105, 844–849.
[84] J. Schmitt, A. Maheshwari, M. Heck, S. Lux and M. Vetter,
J. Power Sources,
2017,
353, 183–194.
[85] E. Teliz, C. F. Zinola and V. Díaz,
Electrochim. Acta,
2022,
426, 140801.
[86] Z. Xu, H. Li, M. Yazdi, K. Ouyang and W. Peng,
Electronics,
2022,
11(
23), 3863.
[87] P. Liu, W. Zhang, X. Liu, Y. Zhang and F. Wu, IOP Conf. Ser.: Mater. Sci. Eng., 2018, 452(3), 32088.
[88] Y. Abe, N. Hori and S. Kumagai,
Energies,
2019,
12(
23), 4507.
[89] H. Leduc, R. Okamura, E. Kyeyune-Nyombi, K. Huynh and S. Chung,
ECS Meet Abstr,
2020,
MA2020-02, 1584.
[90] G. L. Plett,
J. Power Sources,
2004,
134(
2), 252–261.
[91] J. Zhang, L. Zhang, F. Sun and Z. Wang,
IEEE Access,
2018,
6, 23848–23863.
[92] C. Chen, Z. Wei and A. C. Knoll,
IEEE Trans. Transp. Electrif.,
2022,
8(
3), 3068–3089.
[93] A. Kirchev, Battery Management and Battery Diagnostics. In: P. T Moseley, J Garche editors. Electrochemical Energy Storage for Renewable Sources and Grid Balancing. Elsevier, 2015. p.411–435.
[94] J. Olarte, E. Zulueta, R. Ferret, U. Fernández-Gámiz and J. M. Lopez-Guede, Electronics, 2021, 10(11), 12281.
[95] D. Simatupang, A. Benshatti and S.-Y. Park, In: Embedded Electrochemical Impedance Spectroscopy into Battery Management System, ECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society; Toronto, ON, Canada. 2021, pp 1–6.
[96] M. D. Murbach, V. W. Hu and D. T. Schwartz,
J. Electrochem. Soc.,
2018,
165(
11), A2758–A2765.
[97] B. Liebhart, M. Satzke, L. Komsiyska and C. Endisch,
J. Power Sources,
2020,
480, 228673.
[98] T. L. Kirk, A. Lewis-Douglas, D. Howey and C. P. Please,
J. Electrochem. Soc.,
2023,
170, 010514.
[99] O. Bohlen, S. Buller, R. W. De Doncker, M. Gelbke and R. Naumann, In: Impedance based battery diagnosis for automotive applications, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551); Aachen, Germany. 2004, 4, pp 2792–2797.
[100] R. S. Robinson,
J. Power Sources,
1993,
42(
3), 381–388.
[101] X. Wang, X. Wei, H. Dai and Q. Wu, In: State Estimation of Lithium Ion Battery Based on Electrochemical Impedance Spectroscopy with On-Board Impedance Measurement System, 2015 IEEE Vehicle Power and Propulsion Conference (VPPC); Montreal, QC, Canada. 2015, pp 1–5.
[102] L. Zhao, Q. Fu and Z. Liu, In: An electrochemical impedance spectroscopy measurement system for electric vehicle batteries, 2016 35th Chinese Control Conference (CCC); Chengdu, China. 2016, pp 5050–5055.
[103] Z. Gong, Z. Liu, Y. Wang, K. Gupta, C. da Silva, T. Liu, Z. H. Zheng, W. P. Zheng, J. P. M. van Lammeren, H. J. Bergveld, C. H. Amon and O. Trescases, In: 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio; TX, USA. 2018, pp 1922–1929.
[104] A. B. Nemati, S. M. Mousavi-Khoshdel, G. R. Molaeimanesh and S. Ebrahimi-Nejad,
J. Therm. Anal. Calorim.,
2021,
146, 665–672.
[105] B. Li, H. Qu, M. Zhou and D. Jiang, In: 2023 25th European Conference on Power Electronics and Applications (EPE’23 ECCE Europe); Aalborg, Denmark. 2023, pp 1–6.
[106] X. Wang, H. Dai and B. Jiang, In: 2018 IEEE Vehicle Power and Propulsion Conference (VPPC); Chicago, IL, USA. 2018, pp 1–6.
[107] Q. Zhang, D. Wang, B. Yang, H. Dong, C. Zhu and Z. Hao,
J. Energy Storage,
2022,
50, 104182.
[108] Y. Jiang, C. Zhang, W. Zhang, W. Shi and Q. Liu, J. Ind. Eng. Manag., 2013, 6(2), 686–697.
[109] X. Lin, K. Khosravinia, X. Hu, J. Li and W. Lu,
Prog. Energy Combust. Sci.,
2021,
87, 100953.
[110] E. Tsioumas, N. Jabbour, D. Papagiannis, M. Koseoglou and C. Mademlis, In: 2023 IEEE 14th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED); Chania, Greece. 2023, pp 291–296.
[111] J. Remmlinger, M. Buchholz, M. Meiler, P. Bernreuter and K. Dietmayer,
J. Power Sources,
2011,
196(
12), 5357–5363.
[112] A. Barré, F. Suard, M. Gérard, M. Montaru and D. Riu, J. Power Sources, 2014, 245, 846–856.
[113] F. Farooq, A. N. Khan, L. S. June and W. Choi, In: Development of the high voltage EIS instrument for the evaluation of the residual useful life of the batteries, in: 2019 Prodeeding of the Korean Institute of Power Electronics Power Electronics Conference; Seoul. 2019, pp 216–217.
[114] A. Rastegarpanah, J. Hathaway and R. Stolkin,
Energies,
2021,
14(
9), 2597.
[115] I. Babaeiyazdi, A. Rezaei-Zare and S. Shokrzadeh,
Energy,
2021,
223, 120116.
[116] L. Wang, X. Zhao, Z. Deng and L. Yang,
J. Energy Storage,
2023,
57, 106275.
[117] E. Ivers-Tiffée and A. Weber,
J. Ceram. Soc. Japan,
2017,
125(
4), 193–201.
[118] Q. Li, D. Yi, G. Dang, H. Zhao, T. Lu, Q. Wang, C. Lai and J. Xie,
World Electr. Veh. J.,
2023,
14(
12), 321.
[119] E. Goldammer and J. Kowal,
Batteries,
2021,
7(
2), 36.
[120] B. Balasingam, M. Ahmed and K. Pattipati,
Energies,
2020,
13(
11), 2825.