J. Electrochem. Sci. Technol Search

CLOSE


J. Electrochem. Sci. Technol > Volume 2(1); 2011 > Article
Journal of Electrochemical Science and Technology 2011;2(1):8-13.
DOI: https://doi.org/10.5229/JECST.2011.2.1.008   
Cycling Performance and Surface Chemistry of Si-Cu Anode in Ionic Liquid Battery Electrolyte Diluted with Dimethyl Carbonate
Cao Cuong Nguyen, Dong-Won Kim, Seung-Wan Song
Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University;Department of Chemical Engineering, Hanyang University;Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University;
Abstract
Interfacial compatibility between the Si-Cu electrode and diluted ionic liquid electrolyte containing 50 vol.% of 1M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)/1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide (MPP-TFSI) and 50 vol.% dimethyl carbonate (DMC) in a lithium cell and dilution effect on surface chemistry are examined. ex-situ ATR FTIR analysis results reveal that the surface of the Si-Cu electrode cycled in the diluted ionic liquid electrolyte is effectively passivated with the SEI layer mainly composed of carboxylate salts-containing polymeric compounds produced by the decomposition of DMC. Surface species by the decomposition of TFSI anion and MPP cation are found to be relatively in a very low concentration level. Passivation of electrode surface with the SEI species contributes to protect from further interfacial reactions and to preserve the electrode structure over 200 cycles, delivering discharge capacity of > 1670 $mAhg^{-1}$ and capacity retention of 88% of maximum discharge capacity.
Key Words: Rechargeable lithium batteries, Si-based anode, Diluted ionic liquid electrolyte, SEI layer


ABOUT
ARTICLE CATEGORY

Browse all articles >

BROWSE ARTICLES
AUTHOR INFORMATION
Editorial Office
E-mail: journal@kecs.or.kr    Tel: +82-2-568-9392    Fax: +82-2-568-5931                   

Copyright © 2024 by The Korean Electrochemical Society.

Developed in M2PI

Close layer
prev next