[1] Y. Hamidi, S. A. Ataei and A. Sarrafi,
J. Chem. Technol. Biotechnol,
2021,
96(
5), 1302–1307.
[2] S. Wang, D. Wang, Z. Yu, X. Dong, S. Liu, H. Cui and B. Sun,
Environ. Sci. Process. Impacts,
2021,
23(
1), 9–27.
[3] Ł. Ławniczak, M. Woźniak-Karczewska, A. P. Loibner, H. J. Heipieper and Ł. Chrzanowski,
Molecules,
2020,
25(
4), 856.
[4] B. M. Coppotelli, A. Ibarrolaza, M. T. Del Panno and I. S. Morelli,
Microb. Ecol,
2008,
55, 173–183.
[5] A. K. Haritash and C. P. Kaushik,
J. Hazard. Mater,
2009,
169, 1–15.
[6] P. Logeshwaran, M. Megharaj, S. Chadalavada, M. Bowman and R. Naidu,
Environ. Technol. Innov,
2018,
10, 175–193.
[7] V. G. Grishchenkov, R. T. Townsend, T. J. McDonald, R. L. Autenrieth, J. S. Bonner and A. M. Boronin,
Process Biochem,
2000,
35, 889–896.
[8] M. Kumar, N. S. Bolan, S. A. Hoang, A. D. Sawarkar, T. Jasemizad, B. Gao, S. Keerthanan, L. P. Padhye, L. Singh, S. Kumar, M. Vithanage, Y. Li, M. Zhang, M. B. Kirkham, A. Vinu and J. Rinklebe,
J. Hazard. Mater,
2021,
420, 126534.
[9] Y. Huang, H. Pan, Q. Wang, Y. Ge, W. Liu and P. Christie,
Chemosphere,
2019,
224, 265–271.
[10] S. G. A. Flimban, I. M. I. Ismail, T. Kim and S. E. Oh, Energies, 2019, 12, 1–20.
[11] S. Son, B. Koo, H. Chai, H. V. H. Tran, S. Pandit and S. P. Jung,
J. Water Process Eng,
2021,
40, 101844.
[12] A. A. Pawar, A. Karthic, S. Lee, S. Pandit and S. P. Jung,
Environ. Eng. Res,
2022,
27(
1), 200484.
[13] M. Zahid, N. Savla, S. Pandit, V. K. Thakur, S. P. Jung, P. K. Gupta, R. Prasad and E. Marsili,
Desalination,
2022,
521, 115381.
[14] Y. V. Nancharaiah, S. V. Mohan and P. N. L. Lens, Removal and Recovery of Metals and Nutrients from Wastewater Using Bioelectrochemical Systems, 2019, 693–720.
[15] M. Quraishi, K. Wani, S. Pandit, P. K. Gupta, A. K. Rai, D. Lahiri, D. A. Jadhav, R. R. Ray, S. P. Jung, V. K. Thakur and R. Prasad, Fermentation, 2021, 7(291), 1–37.
[16] H. Z. Hamdan, D. A. Salam, A. R. Hari, L. Semerjian and P. Saikaly,
Sci. Total Environ,
2017,
575, 1453–1416.
[17] X. Li, R. Zheng, X. Zhang, Z. Liu, R. Zhu, X. Zhang and D. Gao,
J. Environ. Manage,
2019,
235, 70–76.
[18] C. K. Algar, A. Howard, C. Ward and G. Wanger, Sci. Rep, 2020, 10, 13087.
[19] J. Prasad and R. K. Tripathi,
J. Power Sources,
2020,
450, 227721.
[20] B. Yu, J. Tian and L. Feng,
J. Hazard. Mater,
2017,
336, 110–118.
[21] C. E. Reimers, L. M. Tender, S. Fertig and W. Wang,
Environ. Sci. Technol,
2001,
35, 192–195.
[22] M. Sherafatmand and H. Y. Ng,
Bioresour. Technol,
2015,
195, 122–130.
[23] Z. Guo, J. J. Richardson, B. Kong and K. Liang, Sci. Adv, 2020, 6, 1–17.
[24] H. Nõlvak, N. P. Dang, M. Truu, A. Peeb, K. Tiirik, M. O’Sadnick and J. Truu,
Microorganisms,
2021,
9(
12), 2425.
[25] G. Mohanakrishna, I. M. Abu-Reesh, S. Kondaveeti, R. I. Al-Raoush and Z. He,
Bioresour. Technol,
2018,
253, 16–21.
[26] S. P. Jung and S. Pandit, Important Factors Influencing Microbial Fuel Cell Performance.
Microbial electrochemical technology, Elsevier,
2019, 377–406.
[27] M. F. Umar, M. Rafatullah, S. Z. Abbas, M. N. Mohamad Ibrahim and N. Ismail,
Int. J. Environ. Res. Public Health,
2021,
18, 3811.
[28] S. Chen, S. A. Patil, R. K. Brown and U. Schröder, Appl. Energy, 2019, 15, 233–234.
[29] S. Kerzenmacher, Engineering of Microbial Electrodes. Bioelectrosynthesis. Springer,
2017.167, p.135–180.
[30] Q. Du, J. An, J. Li, L. Zhou, N. Li and X. Wang,
J. Power Sources,
2017,
343, 477–482.
[31] H. Rismani-Yazdi, S. M. Carver, A. D. Christy and O. H. Tuovinen,
J. Power Sources,
2008,
180, 683–694.
[32] P. Clauwaert, P. Aelterman, T. H. Pham, L. De Schamphelaire, M. Carballa, K. Rabaey and W. Verstraete,
Appl. Microbiol. Biotechnol,
2008,
79, 901–913.
[33] R. Rudra, V. Kumar, A. Nandy and P. P. Kundu, Performances of Separator and Membraneless.
Microbial Fuel Cell,
2018, 125–140.
[34] S. W. Hong, I. S. Chang, Y. S. Choi and T. H. Chung,
Bioresour. Technol,
2009,
100, 3029–3035.
[35] K. Y. Kim, W. Yang and B. E. Logan,
Water Res,
2015,
80, 41–46.
[36] S. P. Jung, E. Kim and B. Koo,
Chemosphere,
2018,
209, 542–550.
[37] C. Fuentes-Albarrán, A. Del Razo, K. Juarez and A. Alvarez-Gallegos,
Sol. Energy,
2012,
86, 1099–1107.
[38] X. Guo, Y. Zhan, C. Chen, B. Cai, Y. Wang and S. Guo,
Renew. Energy,
2016,
87, 437–444.
[39] S. J. Varjani, D. P. Rana, A. K. Jain, S. Bateja and V. N. Upasani,
Int. Biodeterior. Biodegrad,
2015,
103, 116–124.
[40] D. R. Bond, D. E. Holmes, L. M. Tender and D. R. Lovley,
Science,
2002,
295, 483–485.
[41] G. Palanisamy, H. Y. Jung, T. Sadhasivam, M. D. Kurkuri, S. C. Kim and S. H. Roh,
J. Clean. Prod,
2019,
221, 598–621.
[42] S. Jung,
Int. J. Electrochem. Sci,
2012,
7, 1109–11100.
[43] K. Venkidusamy, M. Megharaj, M. Marzorati, R. Lockington and R. Naidu,
Sci. Total Environ,
2016,
539, 61–69.
[44] G. C. Gil, I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park and H. J. Kim,
Biosens. Bioelectron,
2003,
8, 327–334.
[45] Q. Zhao, R. Li, M. Ji and Z. J. Ren,
Bioresour. Technol,
2016,
220, 549–556.
[46] G. Guo, F. Tian, K. Ding, L. Wang, T. Liu and F. Yang,
Int. Biodeterior. Biodegrad,
2017,
123, 56–62.
[47] B. E. Logan, Chaper 4-Power Generation. Microbial Fuel Cells. John Wiley & Sons, Inc, 2008. p.44–60.
[48] B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete and K. Rabaey,
Environ. Sci. Technol,
2006,
40, 5181–5192.
[49] Y. Fan, E. Sharbrough and H. Liu,
Environ. Sci. Technol,
2008,
42, 8101–8107.
[50] F. Harnisch and U. Schröder,
Chem. Soc. Rev,
2010,
39, 4433–4448.
[51] K. Wiesener and D. Ohms, Electrode kinetics and electrocatalysis of hydrogen and oxygen elecytrode reactions, 1990, 63–103.
[52] E. I. Solomon and S. S. Stahl,
Chem. Rev,
2018,
118, 2299–2301.
[53] Y. Jia, D. Zhang, H. You, W. Li and K. Jiang, J. Nanoparticle Res, 2019, 21(3), 1–10.
[54] A. Kundu, J. N. Sahu, G. Redzwan and M. A. Hashim,
Int. J. Hydrog. Energy,
2013,
38, 1745–1757.
[55] D. T. Nguyen and K. Taguchi, Effective Cathode Catalysts for O
2 Reduction Reactions. Bioelectrochemical Systems. Springer,
2020. p.169–187.
[56] A. Mohanty, D. P. Jaihindh, Y. P. Fu, S. P. Senanayak, L. S. Mende and A. Ramadoss,
J. Power Sources,
2021,
488, 229444.
[57] B. Koo and S. P. Jung,
Chem. Eng. J,
2021,
424, 130388.
[58] N. Savla, S. Khilari, S. Pandit and S. P. Jung, Effective Cathode Catalysts for Oxygen Reduction Reactions in Microbial Fuel Cell. Bioelectrochemical Systems. Springer,
2020. p.189–210.
[59] N. Wagner,
J. Appl. Electrochem,
2002,
32, 859–863.
[60] U. Karra, G. Huang, R. Umaz, C. Tenaglier, L. Wang and B. Li,
Bioresour. Technol,
2013,
144, 477–484.
[61] B. Liu, A. Weinstein, M. Kolln, C. Garrett, L. Wang, A. Bagtzoglou, U. Karra, Y. Li and B. Li,
J. Power Sources,
2015,
286, 210–216.
[62] A. Gurung, J. Kim, S. Jung, B. H. Jeon, J. E. Yang and S. E. Oh,
Biotechnol. Lett,
2012,
34, 1833–1839.
[63] P. Dange, N. Savla, S. Pandit, R. Bobba, S. P. Jung, P. Kumar Gupta, M. Sahni and R. Prasad,
J. Renew. Mater,
2022,
10, 665–697.
[64] A. K. Worku, D. W. Ayele and N. G. Habtu, SN Appl. Sci, 2021, 3, 764.
[65] Y. L. Cao, H. X. Yang, X. P. Ai and L. F. Xiao,
J. Electroanal. Chem,
2003,
557, 127–134.
[66] S. Min and Y. Kim,
Minerals,
2020,
10(
10), 884.
[67] K. Michelson, R. E. Alcalde, R. A. Sanford, A. J. Valocchi and C. J. Werth,
Environ. Sci. Technol,
2019,
53, 3480–3487.
[68] C. Fuentes-Albarrán, K. Juárez, S. Gamboa, A. Tirado and A. Alvarez-Gallegos,
J. Chem. Technol. Biotechnol,
2020,
95, 3169–3178.
[69] S. B. Ma, K. Y. Ahn, E. S. Lee, K. H. Oh and K. B. Kim,
Carbon,
2007,
45, 375–382.
[70] E. Aleman-Gama, A. J. Cornejo-Martell, A. Ortega-Martínez, S. K. Kamaraj, K. Juárez, S. Silva-Martínez and A. Alvarez-Gallegos,
J. Electroanal. Chem,
2021,
894, 115365.
[71] B. Koo, S. M. Lee, S. E. Oh, E. J. Kim, Y. Hwang, D. Seo, J. Y. Kim, Y. H. Kahng, Y. W. Lee, S. Y. Chung, S. J. Kim, J. H. Park and S. P. Jung,
Electrochim. Acta,
2019,
297, 613–622.
[72] T. Nam, S. Son, E. Kim, H. V. H. Tran, B. Koo, H. Chai, J. Kim, S. Pandit, A. Gurung, S. E. Oh, E. J. Kim, Y. Choi and S. P. Jung,
Environ. Eng. Res,
2018,
23, 383–389.
[73] H. Liu and B. Logan, ACS Natl. Meet. B. Abstr, 2004, 228, 4040–4046.
[74] H. V. H. Tran, E. Kim and S. P. Jung,
J. Ind. Eng. Chem,
2022,
106, 269–278.
[75] E. Bolyen, J. R. Rideout, M. R. Dillon, N. A. Bokulich, C. C. Abnet and J. G. Caporaso,
Nat. Biotechnol,
2019,
37, 852–857.
[76] N. Das and P. Chandran, Biotechnol. Res. Int, 2011, 2011, 941810.
[77] T. K. Sajana, M. M. Ghangrekar and A. Mitra,
Bioresour. Technol,
2014,
155, 84–90.
[78] P. A. Vieira, R. B. Vieira, S. Faria, E. J. Ribeiro and V. L. Cardoso,
J. Hazard. Mater,
2009,
168, 1366–1372.
[79] S. Jung, M. M. Mench and J. M. Regan,
Environ. Sci. Technol,
2011,
45, 9069–9074.
[80] R. Bartha and R. M. Atlas,
Adv. Appl. Microbiol,
1977,
22, 225–266.
[81] R. Bartha,
Microb. Ecol,
1986,
12, 155–172.
[82] D. Massias, V. Grossi and J. C. Bertrand,
Comptes Rendus - Geosci,
2003,
335, 435–439.
[83] S. Oh, B. Min and B. E. Logan,
Environ. Sci. Technol,
2004,
38, 4900–4904.
[84] S. E. Oh and B. E. Logan,
Appl. Microbiol. Biotechnol,
2006,
70, 162–169.
[85] H. Guo, S. Tang, S. Xie, P. Wang, C. Huang, X. Geng, X. Jia, H. Huo, X. Li, J. Zhang, Z. Zhang and J. Fang, Sci. Rep, 2020, 10, 1–10.
[86] S. Jung and J. M. Regan,
Appl. Environ. Microbiol,
2011,
77, 564–571.
[87] H. Guo, S. Xie, H. Deng, X. Geng, P. Wang, C. Huang and S. Tang, Environ. Prog. Sustain. Energy, 2020, 39(5), e13409.
[88] M. H. in’t Zandt, N. Kip, J. Frank, S. Jansen, J. A. van Veen, M. S. M. Jetten and C. U. Welte, Appl. Environ. Microbiol, 2019, 85(20), e01369–19.
[89] T. Yamashita and H. Yokoyama, Biotechnol. Biofuels, 2018, 11, 39.
[90] S. J. Dunaj, J. J. Vallino, M. E. Hines, M. Gay, C. Kobyljanec and J. N. Rooney-Varga,
Environ. Sci. Technol,
2012,
46, 1914–1922.
[91] H. Itoh, S. Ishii, Y. Shiratori, K. Oshima, S. Otsuka, M. Hattori and K. Senoo,
Microbes Environ,
2013,
28(
3), 370–380.
[92] W. Niyom, D. Komolyothin and B. B. Suwannasilp,
Eng. J,
2018,
22(
4), 23–37.
[93] C. Muangchinda, R. Pansri, W. Wongwongsee and O. Pinyakong,
J. Appl. Microbiol,
2013,
114, 1311–1324.
[94] A. Angelov, S. Bratkova and A. Loukanov,
Energy Convers. Manag,
2013,
67, 283–286.