[1] International Energy Agency (IEA). Global Hydrogen Review 2021. IEA, Paris, France, 2021.
[2] W. Hwang and Y.-E. Sung,
J. Electrochem. Sci. Technol,
2023,
14(
2), 120–130.
[3] A. Lim, M. K. Cho, S. Y. Lee, H.-J. Kim, S. J. Yoo, Y.-E. Sung, J. H. Jang and H. S. Park,
J. Electrochem. Sci. Techol,
2017,
8(
4), 265–273.
[4] K. Ayers, N. Danilovic, R. Ouimet, M. Carmo, B. Pivovar and M. Bornstein,
Annu. Rev. Chem. Biomol. Eng,
2019,
10, 219–239.
[5] S. E. Hosseini and M. A. Wahid,
Renew. Sustain. Energy Rev,
2016,
57, 850–866.
[6] C.-W. Sun and S.-S. Hsiau,
J. Electrochem. Sci. Technol,
2018,
9(
2), 99–108.
[7] A. Mayyas, M. Ruth, B. Pivovar, G. Bender and K. Wipke, Manufacturing cost analysis for proton exchange membrane water electrolyzers. National Renewable Energy Laboratory, Golden, CO, United States, 2019.NREL/TP-6A20-72740.
[8] J. Park, Z. Kang, G. Bender, M. Ulsh and S. A. Mauger,
J. Power Sources,
2020,
479, 228819.
[9] A. Steinbach, Low-Cost, High Performance Catalyst Coated Membranes for PEM Water Electrolyzers. 3M Company, Maplewood, MN, United States, 2022.DOE-3M-0008425.
[10] S. M. Alia, M.-A. Ha, G. C. Anderson, C. Ngo, S. Pylypenko and R. E. Larsen,
J. Electrochem. Soc,
2019,
166(
15), F1243–F1252.
[11] M. Bühler, F. Hegge, P. Holzapfel, M. Bierling, M. Suermann, S. Vierrath and S. Thiele,
J. Mater. Chem. A,
2019,
7(
47), 26984–26995.
[12] S. M. Alia, K. S. Reeves, J. S. Baxter and D. A. Cullen,
J. Electrochem. Soc,
2020,
167, 144512.
[13] P. K. R. Holzapfel, M. Bühler, D. Escalera-López, M. Bierling, F. D. Speck, K. J. J. Mayrhofer, S. Cherevko, C. V. Pham and S. Thiele,
Small,
2020,
16(
37), 2003161.
[14] J. Lopata, Z. Kang, J. Young, G. Bender, J. W. Weidner and S. Shimpalee,
J. Electrochem. Soc,
2020,
167, 064507.
[15] B. Mayerhöfer, D. McLaughlin, T. Böhm, M. Hegelheimer, D. Seeberger and S. Thiele,
ACS Appl. Energy Mater,
2020,
3(
10), 9635–9644.
[16] Y. Jang, C. Seol, S. M. Kim and S. Jang,
Int. J. Hydrog. Energy,
2022,
47(
42), 18229–18239.
[17] A. Voronova, H.-J. Kim, J. H. Jang, H.-Y. Park and B. Seo,
Int. J. Energy Res,
2022,
46(
9), 11867–11878.
[18] B.-S. Lee, S. H. Ahn, H.-Y. Park, I. Choi, S. J. Yoo, H.-J. Kim, D. Henkensmeier, J. Y. Kim, S. Park, S. W. Nam, K.-Y. Lee and J. H. Jang,
Appl. Catal. B: Environ,
2015,
179, 285–291.
[19] S. Choe, B.-S. Lee and J. H. Jang,
J. Electrochem. Sci. Technol,
2017,
8(
1), 7–14.
[20] S. Choe, B.-S. Lee, M. K. Cho, H.-J. Kim, D. Henkensmeier, S. J. Yoo, J. Y. Kim, S. Y. Lee, H. S. Park and J. H. Jang,
Appl. Catal. B: Environ,
2018,
226, 289–294.
[21] A. Lim, J. Kim, H. J. Lee, H.-J. Kim, S.J. Yoo, J. H. Jang, H.-Y. Park, Y.-E. Sung and H. S. Park,
Appl. Catal. B: Environ,
2020,
272, 118955.
[22] E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev and E. Budevski,
Electrochim. Acta,
2007,
52(
12), 3889–3894.
[23] K. E. Ayers, J. N. Renner, N. Danilovic, J. X. Wang, Y. Zhang, R. Maric and H. Yu,
Catal. Today,
2016,
262, 121–132.
[24] A. Laube, A. Hofer, S. Ressel, A. Chica, J. Bachmann and T. Struckmann,
Int. J. Hydrog. Energy,
2021,
46(
79), 38972–38982.
[25] C. Liu, M. Carmo, G. Bender, A. Everwand, T. Lickert, J. L. Young, T. Smolinka, D. Stolten and W. Lehnert,
Electrochem. Commun,
2018,
97, 96–99.
[26] H.-J. Ban, M. Y. Kim, D. Kim, J. Lim, T. W. Kim, C. Jeong, Y.-A. Kim and H.-S. Kim, J. Electrochem. Sci. Technol, 2019, 10(1), 22–28.
[27] M. Mandal, A. Valls, N. Gangnus and M. Secanell,
J. Electrochem. Soc,
2018,
165(
7), F543–F552.
[28] G. Yang, S. Yu, Z. Kang, Y. Li, G. Bender, B. S. Pivovar, J. B. Green Jr, D. A. Cullen and F.-Y. Zhang,
Adv. Energy Mater,
2020,
10(
16), 1903871.
[29] P. Millet, M. Pineri and R. Durand,
J. Appl. Electrochem,
1989,
19, 162–166.
[30] F. Yang, C. Lei, A. Griffith, R. Stone and C. Mittelsteadt, Plug Power. Inc. Proton exchange membrane water electrolyzer membrane electrode assembly. United States patent US 2022, US20220243339A1.
[31] S. Mauger, Roll to Roll (R2R) Manufacturing of Electrolysis Electrodes for Low Cost Hydrogen Production. National Renewable Energy Laboratory, Golden, CO, United States, 2022.NREL/TP-5900-83194.
[32] E. B. Creel, K. Tjiptowidjojo, J. A. Lee, K. M. Livingston, P. R. Schunk, N. S. Bell, A. Serov and D. L. Wood III,
J. Colloid Interface Sci,
2022,
610, 474–485.
[33] T. T. Ngo, T. L. Yu and H.-L. Lin,
J. Power Sources,
2013,
225, 293–303.
[34] T. V. Cleve, S. Khandavalli, A. Chowdhury, S. Medina, S. Pylypenko, M. Wang, K. L. More, N. Kariuki, D. J. Myers, A. Z. Weber, S. A. Mauger, M. Ulsh and K. C. Neyerlin, ACS Appl. Energy Mater, 2019, 11(50), 46953–46964.
[35] A. Lim, J. S. Lee, S. Lee, S. Y. Lee, H. Kim, S. J. Yoo, J. H. Jang, Y.-E. Sung and H. S. Park,
Appl. Catal. B: Environ,
2021,
297, 120458.
[36] Y. D. Yi and Y. C. Bae,
Polymer,
2017,
130, 112–123.
[37] Y.-H. Huang, Y.-H. Hsu and Y.-T. Pan,
ACS Appl. Energy Mater,
2022,
5(
3), 2890–2897.
[38] T.-H. Yang, Y.-G. Yoon, G.-G. Park, W.-Y. Lee and C.-S. Kim,
J. Power Sources,
2004,
127(
1–2), 230–233.
[39] J.-H. Park, M.-S. Shin and J.-S. Park,
Electrochim. Acta,
2021,
391, 138971.
[40] D. R. Joshi and N. Adhikari, J. Pharm. Res. Int, 2019, 28(3), 1–18.
[41] Y. Zhai and J. St-Pierre,
Appl. Energy,
2019,
242, 239–247.
[42] T. Shimizu, E. Nogami, Y. Ito, K. Morikawa, M. Nagane, T. Yamashita, T. Ogawa, F. Kametani, H. Yagi and N. Hachiya,
Neurochem. Res,
2021,
46, 2056–2065.
[43] C.-Y. Ahn, J. Ahn, S. Y. Kang, O.-H. Kim, D. W. Lee, J. H. Lee, J. G. Shim, C. H. Lee, Y.-H. Cho and Y.-E. Sung, Sci. Adv, 2020, 6, eaaw0870.
[44] S. Khandavalli, J. H. Park, N. N. Kariuki, S. F. Zaccarine, S. Pylypenko, D. J. Myers, M. Ulsh and S. A. Mauger,
ACS Appl. Mater. Interfaces,
2019,
11(
48), 45068–45079.
[45] M. B. Salvado, P. Schott, L. Guétaz, M. Gerard, T. David and Y. Bultel, J. Power Sources, 2021, 482, 228893.
[46] J. Zhang, Y. Pei, W. Zhu, Y. Liu, Y. Yin, Y. Qin and M. D. Guiver,
J. Power Sources,
2021,
484, 229259.
[47] S. H. de Almeida and Y. Kawano, J. Therm. Anal. Calorim, 1999, 58, 569–577.