[1] B. O’Regan and M. Grätzel,
Nature,
1991,
353, 737–740.
[2] K. Sharma, V. Sharma and S.S. Sharma, Nanoscale Res. Lett, 2018, 13, 381.
[3] D. Devadiga, M. Selvakumar, P. Shetty and M.S. Santosh, J. Power Sources, 2021, 493, 229698.
[4] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa and M. Hanaya,
Chem. Commun,
2015,
51, 15894–15897.
[5] J.-M. Ji, H. Zhou, Y.K. Eom, C.H. Kim and H.K. Kim,
Adv. Energy Mater,
2020,
10(
15), 2000124.
[6] G. Li, L. Sheng, T. Li, J. Hu, P. Li and K. Wang, Sol. Energy, 2019, 177, 80–98.
[7] H.C. Weerasinghe, F. Huang and Y.-B. Cheng,
Nano Energy,
2013,
2(
2), 174–189.
[8] K. Kim, G.W. Lee, K. Yoo, D.Y. Kim, J.K. Kim and N.G. Park, J. Photochem. Photobiol. A: Chem, 2009, 204(2–3), 144–147.
[9] S. Sarker, N.C.D. Nath, M.M. Rahman, S.-S. Lim, A.J.S. Ahammad, W.-Y. Choi and J.-J. Lee,
J. Nanosci. Nanotechnol,
2012,
12(
7), 5361–5366.
[10] M.M. Rahman, H.-Y. Kim, Y.-D. Jeon, I.-S. Jung, K.-M. Noh and J.-J. Lee, Bull. Korean Chem. Soc, 2013, 34(9), 2765–2768.
[11] M.M. Rahman, H.-S. Son, S.-S. Lim, K.-H. Chung and J.-J. Lee,
J. Electrochem. Sci. Technol,
2011,
2(
2), 110–115.
[12] H.-P. Jen, M.-H. Lin, L.-L. Li, H.-P. Wu, W.-K. Huang, P.-J. Cheng and E.W.G. Diau,
ACS Appl. Mater. Interfaces,
2013,
5(
20), 10098–10104.
[13] T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai and H. Arakawa, Sol. Energy Mater. Sol. Cells, 2010, 94(5), 812–816.
[14] G. Boschloo, H. Lindstrom, E. Magnusson, A. Holmberg and A. Hagfeldt, J. Photochem. Photobiol. A, 2002, 148(1–3), 11–15.
[15] J.H. Yum, S.S. Kim, D.Y. Kim and Y.E. Sung, J. Photochem. Photobiol. A, 2005, 173(1), 1–6.
[16] L. Grinis, S. Kotlyar, S. Ruhle, J. Grinblat and A. Zaban,
Adv. Funct. Mater,
2010,
20(
2), 282–288.
[17] H.W. Chen, C.P. Liang, H.S. Huang, J.G. Chen, R. Vittal, C.Y. Lin, C.W.W. Kevin and K.C. Ho,
Chem. Commun,
2011,
47, 8346–8348.
[18] S. Uchida, M. Tomiha, H. Takizawa and M. Kawaraya, J. Photochem. Photobiol. A, 2004, 164(1–3), 93–96.
[19] S.I. Cha, B.K. Koo, K.H. Hwang, S.H. Seo and D.Y. Lee,
J. Mater. Chem,
2011,
21, 6300–6304.
[20] X. Li, H. Lin, J. Li, N. Wang, C. Lin and L. Zhang, J. Photochem. Photobiol. A, 2008, 195(2–3), 247–253.
[21] N.-G. Park, K.M. Kim, M.G. Kang, K.S. Ryu, S.H. Chang and Y.-J. Shin,
Adv. Mater,
2005,
17(
19), 2349–2353.
[22] M. Dürr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda and G. Nelles, Nat. Mater, 2005, 4, 607–611.
[23] Y. Li, W. Lee, D.-K. Lee, K. Kim, N.-G. Park and M.J. Ko,
Appl. Phys. Lett,
2011,
98, 103301.
[24] J.H. Yune, I. Karatchevtseva, G. Triani, K. Wagner and D. Officer,
J. Mater. Res,
2013,
28(
3), 488–496.
[25] H.C. Weerasinghe, P.M. Sirimanne, G.V. Franks, G.P. Simon and Y.B. Cheng, J. Photochem. Photobiol. A: Chem, 2010, 213(1), 30–36.
[26] P.J. Holliman, A. Connell, M. Davis, M. Carnie, D. Bryant and E.W. Jones, Mater. Lett, 2019, 236, 289–291.
[27] F.-M. Raoult, C. R. Hebd. Séances Acad. Sci, 1887, 104, 1430–1433.
[28] M.M. Rahman, M.J. Ko and J.-J. Lee,
Nanoscale,
2015,
7, 3526–3531.
[29] M.M. Rahman, S.Y. Im and J.-J. Lee,
Nanoscale,
2016,
8, 5884–5891.
[30] A.N. Fletcher,
J. Phys. Chem,
1969,
73(
7), 2217–2225.
[31] L.N. Lewis, J.L. Spivack, S. Gasaway, E.D. Williams, J.Y. Gui, V. Manivannan and O.P. Siclovan, Sol. Energy Mater. Sol. Cells, 2006, 90(7–8), 1041–1051.
[32] Y.-S. Lin, M.-T. Chen, Y.-F. Lin, S.-J. Yang and J.-L. Lin, Appl. Surf. Sci, 2006, 252(16), 5892–5899.
[33] K.-H. Chung, M.M. Rahman, H.-S. Son and J.-J. Lee, Int. J. Photoenergy, 2012, 2012, 215802.
[34] J.-J. Lee, M.M. Rahman, S. Sarker, N.C. Deb Nath, A.J.S. Ahammad, J.K. Lee and B. Attaf(Ed), Composite materials for medicine and nanotechnology. Intech, Croatia, 2011. p.181.
[35] M.M. Rahman, N.C.D. Nath and J.-J. Lee, Isrl. J. Chem, 2015, 55(9), 990–1001.
[36] M.M. Rahman,
Materials,
2021,
14(
21), 6563.